A. INTRODUCTION

Purpose

This guide describes laboratory investigations and testing practices acceptable to the staff of the U.S. Nuclear Regulatory Commission (NRC) for determining soil and rock properties and characteristics needed for engineering analysis and design of foundations and earthworks for nuclear power plants. Existing standards reflect the state of the art of laboratory practices for testing soils and rocks; where appropriate, this guide discusses and references such standards.

Applicable Regulations

- Appendix A, to Title 10, Part 50, of the Code of Federal Regulations (10 CFR Part 50), “Domestic Licensing of Production and Utilization Facilities” (Ref. 1) governs the licensing of nuclear power plants and provides general design criteria (GDC).

- 10 CFR Part 52 “Licenses, Certifications, and Approvals for Nuclear Power Plants,” (Ref. 2) governs the issuance of early site permits, standard design certifications, combined licenses, standard design approvals, and manufacturing licenses for nuclear power facilities licensed under Section 103 of the Atomic Energy Act of 1954, as amended (68 Stat. 919), and Title II of the Energy Reorganization Act of 1974 (88 Stat. 1242).

- 10 CFR Part 100, “Reactor Site Criteria” (Ref. 3), requires NRC to consider the physical characteristics of a site including seismology and geology in determining the site’s acceptability for a nuclear power reactor. In particular, 10 CFR 100.20(c), 10 CFR 100.21(d), and 10 CFR 100.23, establish requirements for conducting site investigations for nuclear power plants license applications submitted after January 10, 1997. The evaluation of a site for seismic response analyses and
engineering design requires information about the static and dynamic engineering properties of the site’s soil and rock materials.

Related Guidance

- Regulatory Guide 4.7, “General Site Suitability Criteria for Nuclear Power Stations” (Ref. 4), discusses characteristics that affect a site’s suitability.
- Regulatory Guide 1.132, “Site Investigations for Foundations of Nuclear Power Plants” (Ref. 5), discusses programs of field studies, exploratory borings, and sampling needed to provide geotechnical data for site evaluation and engineering analysis and design.
- NUREG/CR-5739, “Laboratory Investigations of Soils and Rocks for Engineering Analysis and Design of Nuclear Power Facilities” (Ref. 6) provides the technical basis for this guide. The NRC developed NUREG/CR–5739 to reflect current and state-of-the-art techniques for laboratory testing of soils and rock. It summarizes the processes for a laboratory testing program, ranging from storage, selection, handling of test specimens to static, and dynamic testing methods and equipment.

Purpose of Regulatory Guides

The NRC issues regulatory guides to describe to the public methods that the staff considers acceptable for use in implementing specific parts of the agency’s regulations, to explain techniques that the staff uses in evaluating specific problems or postulated accidents, and to provide guidance to applicants. Regulatory guides are not substitutes for regulations and compliance with them is not required. Methods and solutions that differ from those set forth in regulatory guides are acceptable if they provide a basis for the findings required for the issuance or continuance of a permit or license by the Commission.

Paperwork Reduction Act

This regulatory guide contains information collection requirements covered by 10 CFR Part 50, 10 CFR Part 52, and 10 CFR Part 100 that the Office of Management and Budget (OMB) approved under OMB control number 3150-0011, 3150-0151, and 3150-0093 respectively. The NRC may neither conduct nor sponsor, and a person is not required to respond to, an information collection request or requirement unless the requesting document displays a currently valid OMB control number.

B. DISCUSSION

Reason for Revision

The guide was revised to reflect the current standards for testing procedures. Much of this revision involved updating of references. The most significant change is in Section C.6.3, “Resonant Column Tests,” which provides an alternative method for resonant column and torsional shear testing of soil and rock samples.

Background

In the course of site investigations and analyses for nuclear power plant facilities, the purpose of a laboratory-testing program is to identify and classify soils and rocks, and to evaluate their physical and engineering properties. The NRC staff reviews the information obtained from site investigations and
laboratory tests and considers the safety aspects of applying the data to the design and construction of nuclear
plants. Consideration of public safety imposes particularly stringent requirements on the design and
construction of nuclear power plant facilities. Therefore, it is essential that investigators carefully plan and
carry out all phases of a site investigation program to ensure that the associated field and laboratory testing
realistically determines the properties of the soil and rock.

The site and laboratory investigations will depend on actual site conditions, the nature of problems
encountered or suspected at the site, site parameters defined by the design of the nuclear power plant to be
built on the site, and design requirements for foundations and earthworks. Therefore, the site investigation
program should be flexible and tailored to each site and plant design as the site and laboratory investigations
proceed. Experienced engineers and geologists who have demonstrated competence in the field of soil and
rock mechanics testing and familiarity with the site should direct the site investigation program. Specific
testing requirements and details of testing procedures will depend on the nature of the soils and rocks
encountered. Normally, the investigation should follow testing procedures that are generally known and
accepted because they are easy to reproduce and their effects on test results are well understood. Depending
on the nature of the soil and rock material, it may be more appropriate and desirable to modify existing
standard procedures; however, it is important to describe such test procedures fully so that other investigators
can reproduce the test and verify the results. Appendix A shows the laboratory procedures for some of the
most common tests, with related references.

Harmonization with International Standards

The International Atomic Energy Agency (IAEA) has established a series of safety guides and
standards constituting a high level of safety for protecting people and the environment. IAEA safety guides
present international good practices and increasingly reflects best practices to help users striving to achieve
high levels of safety. Pertinent to this regulatory guide, IAEA Safety Guide NS-G-6, “Geotechnical Aspects
of Site Evaluation and Foundations for Nuclear Power Plants,” (Ref. 7) provides guidance on the methods and
procedures for analyses to support the assessment of the geotechnical aspects of the safety of nuclear power
plants.
C. STAFF REGULATORY GUIDANCE

1. Laboratory Testing Program

1.1. Laboratory Facilities

a. Laboratory facilities for soil and rock testing should include adequate test space, temperature controlled areas, and adequate ventilation and airflow. Separate areas, and preferably separate rooms, are desirable for dust- and vibration-producing activities such as sieve analyses, compaction tests, and sample processing. Normally, samples should be tested on arrival from the field, or as soon as possible. If storage is required, investigators should consider storing samples in a separate room with the relative humidity maintained at or near 100 percent. The facility should have the proper equipment necessary to perform the types of tests for which the facility is designed.

1.2. Laboratory Equipment

a. When standard laboratory testing procedures are used, the test apparatus should conform to the published specifications. When the testing apparatus does not satisfy published specifications, investigators should supply a complete description of the essential characteristics of the apparatus with appropriate references to published papers, reports, or monographs. To ensure that essential characteristics (such as dimensions, mating of parts, piston friction, and fluid seals) are not significantly altered by wear, handling, corrosion, dirt, or deterioration of materials, all testing apparatus should be inspected and maintained regularly.

1.3. Calibration

a. Investigators should calibrate all test apparatus and instruments used for quantity measurement against certified calibration standards before putting them into service. Thereafter, they should verify the calibration at regular intervals. The necessary frequency for recalibration varies according to the susceptibility of the apparatus to change and the required precision of measurement. Physical length or volume measuring apparatus such as metallic tapes, rules, pycnometers, cylinders, or graduated cylinders need not be calibrated unless altered by visible wear or damage.

b. An external agency with equipment directly traceable to the National Institute of Standards and Technology should periodically recalibrate weights and other equipment used as standards to calibrate test instruments.

c. Instrument calibrations may be performed in house using the specific laboratory’s own standards of references.
For additional information on calibration, U.S. Army Corps of Engineers EM 1110-2-1909, “Calibration of Laboratory Soils Testing Equipment” (Ref. 14) issued in 1986, recommends procedures for calibrating testing equipment. ASTM D3740, “Standard Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction” (Ref. 15) and Sallfors (1989, Ref. 16) offer information on equipment calibration and its importance, respectively.

1.4. **Reagents and Water**

a. Chemical testing in a soil laboratory is usually limited to routine tests and the methodology should be documented. These tests determine such constituents as organic matter, chlorides, pH value, and sulfates.

For additional information on chemical testing, Head (1992, Ref. 10) provides information on the most widely used chemical tests for soils and groundwater.

2. **Handling and Storage of Samples**

a. The laboratory should verify the identification markings of all samples immediately upon their arrival and maintain an inventory of all samples received.

b. Since the handling and storage of samples can affect their material properties it needs to be considered in analyzing their properties.

For further information on storage and reconsolidation procedures see Graham et al., (Ref.17), for prevention of sample deterioration see Brown and Chow (Ref. 18) and for preserving and transporting soil samples see ASTM D4220, (Ref. 19). It is important that the laboratory examines and tests disturbed samples as soon as possible after they arrive; however, large testing programs may require storage of the samples for several days or weeks. Samples to be used for fluid content determinations, however, should be protected against change in water content.

2.1. **Undisturbed Samples**

a. Undisturbed samples should be protected from vibration, shock, significant temperature changes, and changes in water content. Moisture seals should be checked periodically and renewed as needed. Even the most careful sealing and storing of undisturbed samples cannot prevent physical and clinical changes. Therefore, the samples should not be retained for long periods, particularly if in contact with unprotected steel tubes. Storage for long periods may discredit any subsequent determination of their engineering properties. The duration of storage before testing should be recorded for each sample test. Samples that have been stored for long periods should not be considered to have the characteristics of undisturbed samples and, therefore, should not be tested as such. Delays between sampling and testing and the control kept over specimen volumes during storage affect the strength and compressibility of clay specimens measured in the laboratory.

2.2. **Rocks**

a. Rock samples should be treated as fragile material and protected from excessive changes in humidity and temperature. Like soil samples, rock samples should be examined and tested as soon as possible. For a large testing program, the rock specimens may be stored, but every effort should be made to protect the stored samples against damage.

DG-1256, Page 5
3. **Initial Identification and Examination of Samples**

 a. The initial description of a sample should include, but should not be limited to, what investigators can see, feel, and smell.

 For additional information, ASTM D2488, “Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)” (Ref. 20), describes procedures necessary to describe and identify a soil sample based on visual identification and manual testing. ASTM D4452, “Standard Methods for X-Ray Radiography of Soil Samples” (Ref. 21), describes procedures before x-ray testing of soil samples for the detection of inherent abnormalities and disturbances. This guidance is especially useful for undisturbed samples. ASTM D2487, “Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System)” (Ref. 22), describes the various soil groups in detail and discusses the method of identification so that those who use the system can follow a uniform classification procedure. U.S. Army Corps of Engineers Rock Testing Handbook (RTH) Standard 102-93, “Recommended Practice for Petrographic Examination of Rock Cores” (Ref. 23), describes procedures to use in the petrographic examination of rock core samples. Petrographic examinations determine the physical and chemical properties of a material, describe and classify a sample, and determine the amount of specific materials that may affect the specimen’s intended use.

4. **Selection and Preparation of Test Specimens**

 4.1. **General**

 a. Undisturbed samples of earth fill should be taken for confirmatory testing during construction and in the testing and re-evaluation of existing structures.

 b. Procedures for preparing soil samples for testing should be documented. Details of procedures depend on the nature of the test and the specimen.

 For additional information, EM 1110-2-1906 describes procedures for preparing soil samples for testing, and ASTM D4452 can be used to determine the quality of a sample before testing. Regulatory Guide 1.132 discusses methods of determining the in situ density of cohesionless soils.

 c. The selection of soil and rock specimens for laboratory testing requires careful examination of records of borings and available samples. To permit establishment of the soil profile, investigators should ensure that test specimens are representative of the soil or rock unit to be tested and should describe them accurately. The number of test specimens should be sufficient to produce statistically meaningful test results. Investigators should identify average test values of material properties as well as the range of values that identify their variability. In addition to the most representative samples, investigators should also test samples that have extreme properties and represent critical zones.

 For additional information, Regulatory Guide 1.132, “Site Investigations for Foundations of Nuclear Power Plants,” offers guidelines for spacing of borings and frequency of sampling. Additional boring and sampling may be required when laboratory examination of the samples reveals an inadequate number or distribution of suitable samples to meet testing requirements.
4.2. **Undisturbed Samples**

a. Undisturbed test samples should be prepared to preserve the natural structure and water content of the material. The sample should always be prepared in a humid room. Trimming instruments should be sharp and clean and the sample adequately supported.

b. Investigators should examine undisturbed tube samples of soils for evidence of disturbance. A serious source of damage to undisturbed soil samples is the extrusion of the samples from the sample tubes. One method that may minimize damage during the removal of samples from thin-wall tubes is to split the tube lengthwise by milling. Another method is to saw the tube transversely into segments of sufficient length to extrude a single test specimen from each and then trim off the ends. It is important, however, to consider the fact that milling may cause disturbance and changes in the void ratio in some soils, particularly in loose sand. Dressing the cut tube edges before extruding samples from the tube sections reduces disturbance of the sample. Reuse of thin-walled sample tubes is not recommended if they have been damaged in the process of retrieving or extruding samples. Undisturbed tube samples should satisfy the following criteria:

1. The specific recovery ratio should be between 90 and 100 percent; a tube with less recovery may be acceptable if it appears that the sample was broken off, but appears otherwise undisturbed. Investigators should record and document the actual recovery obtained.

2. The surface or sliced sections of the sample should have no visible distortions, planes of failure, pitting, discoloration, or other signs of disturbance that can be attributed to the sampling operation or handling of the sample.

3. The net length and weight of the sample and the results of other control tests should not have changed during shipment, storage, and handling of the sample.

c. In addition to the above, samples that have been subjected to violent mechanical shocks or to accidental freezing and thawing should not be considered undisturbed, even if other evidence of disturbance is absent.

d. To permit establishment of the soil and geologic profiles, investigators should ensure that test specimens are representative of each discrete soil or rock unit to be tested and are accurately described on the basis of classification tests. Physical and engineering property tests of in situ soils, whether cohesive or cohesionless, should use the highest quality and most representative undisturbed samples available.

e. Trimming and shaping of test specimens of soils require great care to prevent disturbance and changes in water content. Frozen samples should be prepared under conditions that will prevent premature thawing.

f. Laboratory personnel should record a complete detailed description of the specimen that includes, but is not limited to, the material, color, consistency, and brittleness of the material and any indication that the boring samples were disturbed. Personnel should not use disturbed samples for any test other than classification and tests that do not require an undisturbed sample. When a sample is disturbed, its seal may be broken and that sample cannot be used for water content.
4.3. **Reconstituted or Remolded Samples**

a. All tests of strength and dynamic responses of in situ soils, whether cohesive or cohesionless, should use high-quality, undisturbed samples. In some instances, however, reconstituted or remolded samples may be used when representative undisturbed samples cannot be obtained. Remolded samples are also used as representative of compacted fill or backfill material for new construction. Reconstituted specimens representative of in situ material should be molded to the in situ density and moisture content as determined from actual field measurements.

4.4. **Scalping of Large Particles**

a. Since standard-size laboratory testing equipment will not readily accommodate gravel and large particles, such materials should be removed from the total sample, and the finer fraction tested.

For additional information on accounting for large particles, Torrey and Donaghe (1991, Ref. 24) discuss fractional analysis of density for compaction control measures to account for scalped gradation and Evans and Zhou (1995, Ref. 25) report the effects on cyclic strength of the inclusion of gravel size particles in various gradations of granular soils.

4.5. **Laboratory Testing Program**

a. The study of soil and rock mechanics covers the investigation, description, classification, testing, and analysis of soil and rock to determine their interaction with structures built in, upon, or with them. The physical properties of soils and rocks should be determined by carrying out tests on samples of soil in a laboratory. These tests fall into two main categories: classification tests and engineering properties tests. Classification tests indicate the general type of soil and the engineering category to which it belongs. Specific tests to determine engineering properties require careful consideration of field conditions, various design loading conditions, material properties, and possible problems at the site. The focus of laboratory investigations should depend on the design requirements and nature of problems encountered or suspected at the site.

b. In addition to the usual geotechnical engineering considerations, the investigation and evaluation of sites for nuclear power plants requires an evaluation of the site’s response to earthquake loading and other dynamic loading conditions. Such analyses include the evaluation of wave propagation characteristics of subsurface materials with interaction effects of structures, analysis of the potential for soil liquefaction, settlement under dynamic loading, and analysis of the effects of earthquake loading on the stability of slope and embankments.

c. The basic parameters required as input for dynamic response analyses of soils include total mass density, relative density, Poisson’s ratio, static soil strength, initial stress conditions, shear and compressional wave velocities, and the dynamic shear modulus and damping ratio. Such analyses also need the variation of strength, moduli, and damping with strain.

5. **Testing Procedures for Determining Static Soil Properties**

5.1. **General**

a. Laboratory tests on soil and rock material should be thorough and of sufficient documented quality to permit a realistic estimate of soil and rock properties and subsurface conditions. Personnel experienced in laboratory practices for soil testing should be responsible for handling samples,
preparing test specimens, specifying testing procedures and operations, and completing all related
documentation.

5.2. **Soil Testing**

a. Laboratory personnel should perform classification tests and engineering properties tests according to
an accepted and published method. Appendix A shows laboratory procedures for some of the most
common tests, along with other related references. These include the following:

(1) water content
(2) permeability
(3) unit weights
(4) consolidation
(5) void ratio
(6) direct shear
(7) porosity
(8) triaxial compression
(9) saturation
(10) unconfined compression
(11) Atterberg limits
(12) relative density
(13) specific gravity
(14) grain size analysis
(15) erodibility
(16) compaction

b. The number of tests required in a laboratory investigation program will depend on the type of
material, the quality of samples, the purpose and relative importance of the test, and the scatter of test
data. In general, investigators should first identify and classify all soils and rocks sampled at the site
using appropriate index and classification tests. The Unified Soil Classification System
(ASTM D2487) should be used to describe soils and prepare soil profiles, while ASTM D5878,
should be used to classify rock mass for specific engineering purposes. Further tests required to
establish physical and engineering properties should be sufficient to define the range of values for
material properties. The number of tests should be sufficient to cover the range of values expected
under field conditions.

c. Standard test procedures, when followed without deviation and performed on standard equipment,
require documentation by reference only. For tests for which no standard procedures are available or
for which modified or alternative procedures are appropriate, laboratory personnel should document
the details of the test procedures for evaluation and future reference. Personnel should document the
technical basis for deviating from standard testing procedures. Use of nonstandard equipment, even if
it is used with standard testing procedures, should also be documented.

5.3. **Tests of Groundwater or Surface Waters**

a. Testing of groundwater and surface water depends on the nature of potential problems identified at
the site. Acid water, for example, may cause the degradation of carbonate rocks and concrete
foundations. Standard methods of testing water for physical, chemical, radioactive, and
microbiological properties are described in “Standard Methods for the Examination of Water and
Wastewater” (American Public Health Association, American Water Works Association, and Water
Environment Federation, 1999, Ref. 27). This reference also describes methods of testing polluted water, wastewaters, effluents, bottom sediments, and sludges. Investigators should use standard testing methods unless they encounter special problems that require modifications or alternative methods.

6. **Testing Procedures for Determining Dynamic Soil Properties**

6.1. **General**

a. To ensure a realistic assessment of soil properties, it is important that the laboratory tests represent field conditions as closely as is practical. Before performing dynamic tests, laboratory personnel should determine the initial state of stress in the soil and perform a series of static consolidated-drained and consolidated-undrained triaxial compression tests to determine static strength. The dynamic testing program should include tests to determine the soil parameters needed as input for reference analyses and studies of soil structure interaction and to determine the dynamic strength characteristics and liquefaction potential of soils.

For additional information, Appendix A lists some laboratory investigations and testing procedures for determining dynamic soil properties and soil behavior, with related references. Dynamic soil property testing includes cyclic triaxial tests and resonant column tests.

6.2. **Cyclic Triaxial Tests**

a. Investigators should use laboratory cyclic tests only to establish parametric effects on cyclic strength behavior. Because test equipment is readily available and the preparation of undisturbed specimens is relatively easy, the most common cyclic loading technique for investigating liquefaction resistance historically has been the cyclic triaxial test—in spite of wide recognition of the test’s inability to accurately represent field earthquake stresses and boundary conditions (Seed and Idriss, 1982, Ref. 28). Other research studies have demonstrated that laboratory-determined cyclic triaxial strengths (in fact, strengths determined from any unidirectional loading test) are higher than those expected to produce equivalent effects in the field (Seed, 1976, Ref. 29). Research also has shown that estimation of field cyclic test results may not be possible by universal application of sample factors (e.g., gradation, density, and soil type) (Koester, 1992, Ref. 30).

b. Since the cyclic triaxial test does not accurately model the stress conditions in situ, investigators should exercise caution when using laboratory-obtained soil cyclic strengths and should make appropriate downward adjustments of cyclic stress values obtained from triaxial tests, as required. Documentation should present and reference the rationale behind the adjustment and the data supporting its magnitude.

For additional information, see Tatsuoka et al., 1994 (Ref. 31), on cyclic triaxial tests of sand and gravel and Vucetic and Dobry, 1991 (Ref. 32), on cyclic triaxial tests in clays.

6.3. **Resonant Column Tests**

a. ASTM D4015, “Standard Test Methods for Modulus and Damping of Soils by the Resonant-Column Method” (Ref. 33), describes testing procedures to determine the shear modulus, shear damping, rod modulus (Young's modulus), and rod damping for solid cylindrical specimens of soil in undisturbed and remolded conditions by vibration using the resonant column.
b. As an alternative, “Technical Procedures for Resonant Column and Torsional Shear Testing of Soil and Rock Samples,” Procedure PBRCTS-1 (University of Texas at Austin, 2000, Ref. 34), can also be used.

For additional information, Appendix A discusses the limitations and applicability of these tests and gives related references.

7. Testing Procedures for Determining the Engineering Properties of Rock

a. Investigators should perform testing procedures for determining the engineering properties of rock according to accepted and published methods.

For additional information, Appendix A outlines and gives references for common testing procedures.

D. IMPLEMENTATION

The purpose of this section is to provide information on how applicants and licensees\(^1\) may use this guide and information regarding the NRC’s plans for using this regulatory guide. In addition, it describes how the NRC staff complies with 10 CFR 50.109, “Backfitting” and any applicable finality provisions in 10 CFR Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants.”

Use by Applicants and Licensees

Applicants and licensees may voluntarily\(^2\) use the guidance in this document to demonstrate compliance with the underlying NRC regulations. Methods or solutions that differ from those described in this regulatory guide may be deemed acceptable if they provide sufficient basis and information for the NRC staff to verify that the proposed alternative demonstrates compliance with the appropriate NRC regulations. Current licensees may continue to use guidance the NRC found acceptable for complying with the identified regulations as long as their current licensing basis remains unchanged.

Licensees may use the information in this regulatory guide for actions which do not require NRC review and approval such as changes to a facility design under 10 CFR 50.59, “Changes, Tests, and Experiments.” Licensees may use the information in this regulatory guide or applicable parts to resolve regulatory or inspection issues.

Use by NRC Staff

The NRC staff does not intend or approve any imposition or backfitting of the guidance in this regulatory guide. The NRC staff does not expect any existing licensee to use or commit to using the guidance in this regulatory guide, unless the licensee makes a change to its licensing basis. The NRC staff does not expect or plan to request licensees to voluntarily adopt this regulatory guide to resolve a generic regulatory issue. The NRC staff does not expect or plan to initiate NRC regulatory action which would require the use of this regulatory guide. Examples of such unplanned NRC regulatory actions include issuance of an order requiring the use of the regulatory guide, requests for information under 10 CFR 50.54(f) as to whether a

1 In this section, “licensees” refers to licensees of nuclear power plants under 10 CFR Parts 50 and 52; and the term “applicants,” refers to applicants for licenses and permits for (or relating to) nuclear power plants under 10 CFR Parts 50 and 52, and applicants for standard design approvals and standard design certifications under 10 CFR Part 52.

2 In this section, “voluntary” and “voluntarily” means that the licensee is seeking the action of its own accord, without the force of a legally binding requirement or an NRC representation of further licensing or enforcement action.
licensee intends to commit to use of this regulatory guide, generic communication, or promulgation of a rule requiring the use of this regulatory guide without further backfit consideration.

During regulatory discussions on plant specific operational issues, the staff may discuss with licensees various actions consistent with staff positions in this regulatory guide, as one acceptable means of meeting the underlying NRC regulatory requirement. Such discussions would not ordinarily be considered backfitting even if prior versions of this regulatory guide are part of the licensing basis of the facility. However, unless this regulatory guide is part of the licensing basis for a facility, the staff may not represent to the licensee that the licensee’s failure to comply with the positions in this regulatory guide constitutes a violation.

If an existing licensee voluntarily seeks a license amendment or change and (1) the NRC staff’s consideration of the request involves a regulatory issue directly relevant to this new or revised regulatory guide and (2) the specific subject matter of this regulatory guide is an essential consideration in the staff’s determination of the acceptability of the licensee’s request, then the staff may request that the licensee either follow the guidance in this regulatory guide or provide an equivalent alternative process that demonstrates compliance with the underlying NRC regulatory requirements. This is not considered backfitting as defined in 10 CFR 50.109(a)(1) or a violation of any of the issue finality provisions in 10 CFR Part 52.

Additionally, an existing applicant may be required to comply with new rules, orders, or guidance if 10 CFR 50.109(a)(3) applies.

If a licensee believes that the NRC is either using this regulatory guide or requesting or requiring the licensee to implement the methods or processes in this regulatory guide in a manner inconsistent with the discussion in this Implementation section, then the licensee may file a backfit appeal with the NRC in accordance with the guidance in NUREG-1409, “Backfitting Guidelines,” (Ref. 35) and the NRC Management Directive 8.4, “Management of Facility-Specific Backfitting and Information Collection” (Ref. 36).
REFERENCES

3 Publicly available documents from the U.S. Nuclear Regulatory Commission (NRC) are available electronically through the NRC Library on the NRC’s public Web site at http://www.nrc.gov/reading-rm/doc-collections/. The documents can also be viewed on-line for free or printed for a fee in the NRC’s Public Document Room (PDR) at 11555 Rockville Pike, Rockville, MD; the mailing address is USNRC PDR, Washington, DC 20555: telephone (301) 415-4737 or (800) 397-4209; and e-mail pdr.resource@nrc.gov.

5 Copies of International Atomic Energy Agency (IAEA) documents may be obtained through their Web site: WWW.IAEA.Org or by writing the International Atomic Energy Agency P.O. Box 100 Wagramer Strasse 5, A-1400 Vienna, Austria. Telephone (+431) 2600-0, Fax (+431) 2600-7, or E-Mail at Official.Mail@IAEA.Org.

7 Copies can be obtained from the Oxford University Press, 198 Madison Avenue, New York, NY 10016 or through their Web Site: http://global.oup.com/contact_us/?AB=B&cc=us.

8 Copies can be obtained from John Wiley & Sons Inc. via their U.S. Distribution Center at 1 Wiley Drive, Somerset, NJ 08875-1272, telephone: 800-225-5945, of via e-mail at: custserv@wiley.com.

¹ Copies of American Society for Testing and Materials (ASTM) standards may be purchased from ASTM, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, Pennsylvania 19428-2959; telephone (610) 832-9585. Purchase information is available through the ASTM Web site at http://www.astm.org.

¹⁰ Copies can be obtained from Customer Services, Taylor & Francis Group, 325 Chestnut Street, Suite 800, Philadelphia, PA 19106, USA, telephone (800) 354-1420, or via their Web site: http://taylorandfrancisgroup.com/.

34. University of Texas at Austin Geotechnical Engineering Center, “Technical Procedures for Resonant Column and Torsional Shear (RCTS) Testing of Soil and Rock Samples,” Procedure PBRCTS-1, Austin, TX, October 2000.\(^{13}\)

\(^{11}\) Documents from the American Society of Civil Engineers (ASCE) are available through their Web site (http://www.asce.org/); or by contacting their home office at American Society of Civil Engineers, 1801 Alexander Bell Drive, Reston, VA, 20191; telephone (800) 548-2723.

\(^{12}\) Copies can be obtained from the American Public Health Association, 800 I Street NW, Washington, DC 20001-3710, telephone (202) 777-2742, or from their Web Site at: http://apha.org/
35. NRC, “Backfitting and Information Collection, NUREG-1409, July 1990, ADAMS Accession No. ML032230247.

13 Copies can be obtained from the Department of Civil, Architectural & Environmental Engineering Geotechnical Engineering Program, University of Texas, 1 University Station, C1792 Austin, Texas 78712-0280, telephone (512) 232-3682 or from their Web Site at: http://www.ce.utexas.edu/dept/area/geotech/index.html
APPENDIX A

LABORATORY TESTING METHODS FOR SOIL AND ROCK

<table>
<thead>
<tr>
<th>NAME OF TEST</th>
<th>STANDARD OR PREFERRED METHOD</th>
<th>APPENDIX A REFERENCES</th>
<th>PROPERTIES OR PARAMETERS DETERMINED</th>
<th>REMARKS/SPECIAL EQUIPMENT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent fines</td>
<td>ASTM D1140-00(2006)</td>
<td>Refs. 1, 4, 5</td>
<td>Percent of weight of material finer than No. 200 sieve</td>
<td></td>
</tr>
<tr>
<td>Atterberg limits</td>
<td>ASTM D4318-10 D4943-08</td>
<td>Refs. 2, 3, 5, 6, 7, 8</td>
<td>Liquid and plastic limit, plasticity index, shrinkage factor (limit)</td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>ASTM D854-10 D5550-06 C127-07</td>
<td>Refs. 2, 4</td>
<td>Specific gravity, apparent specific gravity, bulk unit weight sufficiently fine to eliminate internal voids in the intact rock</td>
<td>Boiling should not be used for de-airing. Method can be used for rock, after grinding.</td>
</tr>
<tr>
<td>Radiography</td>
<td>ASTM D4452-06</td>
<td>Ref. 9</td>
<td>Qualitative test of sample quality</td>
<td></td>
</tr>
<tr>
<td>Description of soil and rock</td>
<td>ASTM D2487-10 D2488-09a D4452-06 C294-05</td>
<td></td>
<td>Description of soil from visual-manual examination</td>
<td></td>
</tr>
</tbody>
</table>

SOILS—MOISTURE-DENSITY RELATIONS

<table>
<thead>
<tr>
<th>NAME OF TEST</th>
<th>STANDARD OR PREFERRED METHOD</th>
<th>APPENDIX A REFERENCES</th>
<th>PROPERTIES OR PARAMETERS DETERMINED</th>
<th>REMARKS/SPECIAL EQUIPMENT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk unit weight</td>
<td>ASTM C127-07</td>
<td></td>
<td>Bulk unit weight (bulk density)</td>
<td>Methods are applicable to some rocks, with some obvious modifications.</td>
</tr>
<tr>
<td>NAME OF TEST</td>
<td>STANDARD OR PREFERRED METHOD</td>
<td>APPENDIX A REFERENCES</td>
<td>PROPERTIES OR PARAMETERS DETERMINED</td>
<td>REMARKS/SPECIAL EQUIPMENT REQUIREMENTS</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Relative density</td>
<td>ASTM C127-07</td>
<td></td>
<td>Maximum and minimum density of cohesionless soils</td>
<td>Requires vibration table. In vibration table testing, both amplitude and frequency should be adjusted to values that yield greatest density. However, treatment that produces breakage of grains should be avoided, and mechanical analyses should be performed as a check on grain breakage.</td>
</tr>
<tr>
<td>Compaction</td>
<td>ASTM D698-07</td>
<td>Refs. 2, 4, 14</td>
<td>Maximum dry unit weight of soil</td>
<td>Method for earth-rock mixtures is given in Ref. 15.</td>
</tr>
<tr>
<td></td>
<td>D1557-09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4253-00(2006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4254-00(2006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D5080-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOILS—CONSOLIDATION AND PERMEABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidation</td>
<td>ASTM D2435-04</td>
<td>Refs. 2, 4, 14</td>
<td>One-dimensional compressibility, permeability of cohesive soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4186-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td>ASTM D2434-68(2006)</td>
<td>Refs. 2, 4, 16</td>
<td>Permeability</td>
<td>Suitable for remolded or compacted soils. For natural, in situ soils, field test should be used.</td>
</tr>
<tr>
<td></td>
<td>D5084-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOILS—PHYSICAL AND CHEMICAL PROPERTIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogy</td>
<td>ASTM D2974-07</td>
<td>Ref. 20</td>
<td>Identification of minerals</td>
<td>Applicable to rock. Requires x-ray diffraction apparatus. Differential thermal analysis apparatus may also be used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Content</td>
<td>ASTM D4542-07</td>
<td>Ref. 21</td>
<td>Organic and inorganic carbon content as percent of dry weight</td>
<td>Dry combustion methods (ASTM D2974) are acceptable, but where organic matter content is critical, data so obtained should be verified by wet combustion tests.</td>
</tr>
<tr>
<td>Soluble salts</td>
<td>ASTM D4542-07</td>
<td>Ref. 21</td>
<td>Concentration of soluble salts in soil pore water</td>
<td></td>
</tr>
<tr>
<td>Erodibility tests</td>
<td>ASTM D5852-00(2007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinhole test</td>
<td>ASTM D4221-99(2005)</td>
<td>Refs. 22, 23</td>
<td>Significant in evaluation of potential erosion or piping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4647-06e1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crumb test</td>
<td>ATSM D6572-06</td>
<td></td>
<td>Qualitative indication of the natural dispersive characteristics of clayey soils</td>
<td></td>
</tr>
<tr>
<td>NAME OF TEST</td>
<td>STANDARD OR PREFERRED METHOD</td>
<td>APPENDIX A REFERENCES</td>
<td>PROPERTIES OR PARAMETERS DETERMINED</td>
<td>REMARKS/SPECIAL EQUIPMENT REQUIREMENTS</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Cylinder dispersion</td>
<td></td>
<td>Ref. 1</td>
<td>Strength of cohesive soil in uniaxial compression</td>
<td></td>
</tr>
<tr>
<td>SOILS—SHEAR STRENGTH AND DEFORMABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unconfined compression</td>
<td>ASTM D2166-06</td>
<td>Ref. 1</td>
<td>Strength of cohesive soil in uniaxial compression</td>
<td></td>
</tr>
<tr>
<td>Direct shear, consolidated-drained</td>
<td>ASTM D3080-04</td>
<td>Ref. 4</td>
<td>Cohesion and angle of internal friction under drained conditions</td>
<td></td>
</tr>
<tr>
<td>Triaxial compression, unconsolidated-undrained</td>
<td>ASTM D2850-03a(2007)</td>
<td>Refs. 2, 4, 25</td>
<td>Shear strength parameters; cohesion and angle of internal friction for soils of low permeability</td>
<td>Circumferential drains, if used, should be slit to avoid stiffening the test specimen.</td>
</tr>
<tr>
<td>Triaxial compression, consolidated-drained</td>
<td>ASTM D7181-11</td>
<td>Refs. 2, 4, 25</td>
<td>Shear strength parameters; cohesion and angle of internal friction; for long-term loading conditions</td>
<td>Circumferential drains, if used, should be slit to avoid stiffening of test specimen.</td>
</tr>
<tr>
<td>Triaxial compression, consolidated-drained</td>
<td>ASTM D4767-04</td>
<td>Refs. 2, 4, 25</td>
<td>Shear strength parameters; cohesion and angle of internal friction for consolidated soil. With pressure measurements, cohesion and friction may be obtained.</td>
<td></td>
</tr>
<tr>
<td>Cyclic triaxial</td>
<td>ASTM D3999-91(2006)</td>
<td>Refs. 8, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35</td>
<td>Local strain, modulus and damping</td>
<td></td>
</tr>
<tr>
<td>Cyclic simple shear</td>
<td>ASTM D4612-08</td>
<td>Refs. 30, 36</td>
<td>Shear modulus and damping values and cyclic strength of cohesive and cohesionless soils</td>
<td>Tests may be run with either stress control or strain control. Two different types of apparatus, NGI and Roscoe devices, are described in Refs. 35 and 37, respectively.</td>
</tr>
</tbody>
</table>

ROCKS—ENGINEERING PROPERTIES

<table>
<thead>
<tr>
<th>NAME OF TEST</th>
<th>STANDARD OR PREFERRED METHOD</th>
<th>APPENDIX A REFERENCES</th>
<th>PROPERTIES OR PARAMETERS DETERMINED</th>
<th>REMARKS/SPECIAL EQUIPMENT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water content</td>
<td>ASTM D2216-10</td>
<td></td>
<td>Water Content</td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>ASTM C127-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>ASTM D4612-08</td>
<td>Refs. 10, 41</td>
<td>Bulk unit weight, specific gravity, and total porosity (Melcher method) or effective porosity (Simmons or Washburn-Bunting methods)</td>
<td>Soil testing methods are generally applicable with minor modification.</td>
</tr>
<tr>
<td></td>
<td>D4404-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME OF TEST</td>
<td>STANDARD OR PREFERRED METHOD</td>
<td>APPENDIX A REFERENCES</td>
<td>PROPERTIES OR PARAMETERS DETERMINED</td>
<td>REMARKS/SPECIAL EQUIPMENT REQUIREMENTS</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Permeability</td>
<td>ASTM D4525-08</td>
<td>Refs. 10, 41</td>
<td>Permeability of intact rock</td>
<td>Laboratory permeability values are not normally representative of in situ permeability of shallow jointed rock masses.</td>
</tr>
<tr>
<td>Degradation resistance</td>
<td>ASTM C535-09</td>
<td></td>
<td>Percent of weight of rock greater than 3/4 in. (19 mm)</td>
<td></td>
</tr>
<tr>
<td>Seismic velocity</td>
<td>ASTM D2845-08</td>
<td></td>
<td>Compressional and shear wave velocities in intact rock</td>
<td>Requires signal generator, transducers, oscilloscope</td>
</tr>
<tr>
<td>Direct tensile strength</td>
<td>ASTM D2936-08</td>
<td></td>
<td>Uniaxial tensile strength of intact rock</td>
<td></td>
</tr>
<tr>
<td>Splitting tensile strength</td>
<td>ASTM D3967-08</td>
<td></td>
<td>Indirect measure of tensile strength of intact rock</td>
<td></td>
</tr>
<tr>
<td>Modulus of rupture</td>
<td></td>
<td>Ref. 15</td>
<td>Indirect measure of tensile strength of intact rock</td>
<td></td>
</tr>
<tr>
<td>Unconfined compression</td>
<td>ASTM D7012-10</td>
<td></td>
<td>Young’s moduli and unconfined compression strength of intact rock</td>
<td></td>
</tr>
<tr>
<td>Uniaxial compression</td>
<td>ASTM D7012-10</td>
<td></td>
<td>Young’s moduli, Poisson’s ratio</td>
<td></td>
</tr>
<tr>
<td>Triaxial compression undrained</td>
<td>ASTM D7012-10</td>
<td></td>
<td>Young’s moduli, cohesion friction parameters of failure envelope</td>
<td></td>
</tr>
<tr>
<td>Triaxial compression without pore pressure measurements</td>
<td>ASTM D7012-10</td>
<td>Ref. 42</td>
<td>Young’s moduli, cohesion friction parameters</td>
<td></td>
</tr>
<tr>
<td>Triaxial compression with pore pressure measurements</td>
<td></td>
<td>Ref. 42</td>
<td>Young’s moduli, cohesion friction parameters of effective stress conditions</td>
<td></td>
</tr>
<tr>
<td>Slake durability</td>
<td>ASTM D4644-08</td>
<td>Ref. 37</td>
<td>Index of resistance to slaking</td>
<td></td>
</tr>
<tr>
<td>Direct shear</td>
<td>ASTM D5607-08</td>
<td></td>
<td>Shear strength</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX A REFERENCES

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) STANDARDS

ASTM D698-07, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³)),” West Conshohocken, PA.

ASTM D1557-09, “Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³)),” West Conshohocken, PA.

ASTM D2487-10, “Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System),” West Conshohocken, PA.

Appendix A to DG-1256, Page A-8

OTHER APPENDIX A REFERENCES

11. T 3-357, “The Unified Soil Classification System,” U.S. Army Corps of Engineers, Geotechnical Laboratory, Waterways Experiment Station, Vicksburg, MS, 1960.

